Design Methodology for the Thermal Packaging of Hybrid Electronic-Mechanical Products: A Case Study on the Berkeley Emulation Engine (BEE)

Author:

Lee Roderick K. W.1,Montero Michael G.1,Wright Paul K.1

Affiliation:

1. University of California at Berkeley, Berkeley, CA

Abstract

This paper presents a design methodology for the thermal design and packaging of hybrid electronic-mechanical products. In this work, tight integration between ECAD and MCAD was achieved through the use of a web-based tool used in managing the concurrent designs, called the Domain Unified CAD Environment (DUCADE). This work also reduced the amount of time required for thermal simulation by using a web-based Design of Experiment Testbed (DOET) to systematically determine effects of varying system parameters before full-scale computational fluid dynamics (CFD) thermal modeling was performed. The design process began by proper selection of material, manufacturing process and cooling methods, based on electrical and integrated circuit design. DUCADE was then set up to monitor couplings between the various domains. This was followed by computer-aided-design and computer-aided-engineering of the mechanical package. In computer-aided-engineering, DOET was first used to determine variables that had significant effect on the thermal system response. Detailed CFD thermal simulations were then carried out in FLOTHERM only focusing on variables that the DOET determined to have strong effect. Rapid prototypes were fabricated to refine the design before final production. Each step of the cycle was tested and demonstrated through a case study on the design of the Berkeley Emulation Engine (BEE) which involved multi-disciplinary electrical, mechanical, and thermal design.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Aluminum Heatsink for High Reliable CCGA Packages;Lecture Notes in Mechanical Engineering;2023

2. Global collaborative engineering environment for integrated product development;International Journal of Computer Integrated Manufacturing;2005-12

3. The CAD/CAM Interface: A 25-Year Retrospective;Journal of Computing and Information Science in Engineering;2005-07-19

4. Crosstalk: Collaborative Framework for Electro-mechanical Product Design;Advances in Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3