Product Platform Design and Optimization: Status and Promise

Author:

Simpson Timothy W.1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

In an effort to improve customization for today’s highly competitive global marketplace, many companies are utilizing product families to increase variety, shorten lead-times, and reduce costs. The key to a successful product family is the product platform from which it is derived either by adding, removing, or substituting one or more modules to the platform or by scaling the platform in one or more dimensions to target specific market niches. This nascent field of engineering design research has matured rapidly in the past decade, and this paper provides an extensive review of the research activity that has occurred during that time to facilitate product platform design and optimization. Techniques for identifying platform leveraging strategies within a product family are reviewed along with optimization-based approaches to help automate the design of a product platform and its corresponding family of products. Examples from both industry and academia are presented throughout the paper to highlight the benefits of platform-based product development, and the paper concludes with a discussion of promising research directions to help bridge the gap between planning and managing families of products and designing and manufacturing them.

Publisher

ASMEDC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Commonality Design for Civil Aircraft;2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE);2021-07-16

2. Data-Driven Platform Design: Patent Data and Function Network Analysis;Journal of Mechanical Design;2018-12-20

3. Design for Modularity;A Holistic Approach to Ship Design;2018-12-11

4. Modular product development through platform-based design and DFMA;Journal of Engineering Design;2012-09

5. The multi-single-objective problem and its solution by way of evolutionary algorithms;Research in Engineering Design;2010-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3