Biaxial Vibrations of an Elasto-Plastic Beam With a Prescribed Rigid-Body Rotation

Author:

Dibold M.1,Gerstmayr J.1,Irschik H.1

Affiliation:

1. University of Linz, Linz, Austria

Abstract

In the present work, the development of plastic strains in a flexural beam is studied. The beam is modeled as a Bernoullieuler beam, where large rigid-body rotations and biaxial bending in the small strain regime are studied. The deformation is split into the spatial deformation of a hinged-hinged beam and the movement of the second support. Neglecting axial displacements of the beam, this support moves on a sphere. In the present paper, the latter motion is considered as prescribed. The beam thus is assumed to possess only flexural degrees-offreedom. Such a problem is frequently to be encountered in machine dynamics or robotics. We assume the stiffness of the beam to be considerably lowered due to catastrophic environmental influences, such that the deformations relative to the rigid-body motion, albeit small, reach the plastic regime. The equations of motion are derived by Hamilton’s principle. The potential energy follows from the internal energy due to the elastic part of the deformation and the potential due to gravity. Plastic strains are treated according to the theory of eigenstrains, which act as sources of self-stress upon the linear elastic beam. The biaxial deflections are discretized in space by means of Legendre polynomials. The plastic strains are discretized over length, height and width of the beam by small plastic cells. The plastic strains are computed in every time-step by a suitable iterative procedure. An implicit midpoint rule, which preserves the total energy of the system, is used for integration of the equations of motion. Linear elastic/perfectly plastic behavior is exemplarily treated in a numerical study.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3