Affiliation:
1. National Technical University of Athens, Athens, Greece
2. University of Illinois at Urbana-Champaign, Urbana, IL
Abstract
We investigate shock isolation designs based on nonlinear energy pumping caused by piecewise stiffness elements. In particular, we numerically study the shock isolation properties of a primary linear system of two coupled non-conservative oscillators with weakly coupled attachments possessing clearance nonlinearities. Under shock excitation the nonlinear attachments (termed nonlinear energy sinks – NESs) can be designed to absorb a significant portion of the input energy, thus enhancing the shock isolation performance of the primary system. In contrast to the classical linear vibration absorber whose operation is restricted to narrowband frequency ranges, the NESs are capable of efficiently absorbing energies caused by transient broadband disturbances, a feature that facilitates their implementation in practical applications. Moreover, the non-smooth nonlinearities considered in this work are easily implementable since they are realized by means of linear stiffness elements.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献