Quick Prediction of Complex Temperature Fields Using Conditional Generative Adversarial Networks

Author:

Wu Xiaohua1,Lu Longsheng1ORCID,Liang Lanzhi1,Mei Xiaokang1ORCID,Liang Qinghua12,Zhong Yilin12,Huang Zeqiang3,Yang Shu12,He Hengfei4ORCID,Xie Yingxi1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology , Guangzhou 510641, China

2. South China University of Technology

3. Huizhou Desay SV Intelligent Transportation Technological Institute Co., Ltd. , Huizhou 516006, China

4. SZ DJI Technology Co., Ltd. , Shenzhen 518057, China

Abstract

Abstract Qualified thermal management is an important guarantee for the stable work of electronic devices. However, the increasingly complex cooling structure needs several hours or even longer to simulate, which hinders finding the optimal heat dissipation design in the limited space. Herein, an approach based on conditional generative adversarial network (cGAN) is reported to bridge complex geometry and physical field. The established end-to-end model not only predicted the maximum temperature with high precision but also captured real field details in the generated image. The impact of amount of training data on model prediction performance was discussed, and the performance of the models fine-tuned and trained from scratch was also compared in the case of less training data or using in new electronic devices. Furthermore, the high expansibility of geometrically encoded labels makes this method possible to be used in the heat dissipation analysis of more electronic devices. More importantly, this approach, compared to the grid-based simulation, accelerates the process by several orders of magnitude and saves a large amount of energy, which can vastly improve the efficiency of the thermal management design of electronic devices.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3