The Q.U.B. Axisymmetric and Multi-Resonant Wave Energy Convertors

Author:

Whittaker T. J. T.1,Leitch J. G.1,Long A. E.1,Murray M. A.2

Affiliation:

1. Department of Civil Engineering, The Queen’s University of Belfast, Northern Ireland

2. Det norske Veritas, Calgary, Canada

Abstract

This paper describes the optimization of the power conversion chain and the engineering design considerations of an oscillating water column wave power device which would form part of a 2-GW power station. Novel features of the principal device described include the multi-resonant concept, which considerably widens the frequency bandwidth response, and the use of the simple highly efficient Wells self-rectifying air turbine in the secondary power conversion stage. It is concluded that using established technology wave power stations comprising sea bed mounted reinforced concrete structures could produce power for as little as 1.3p per kW-hr after the initial capital repayment period and thus the economics are similar to that of hydro-electric power.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3