Laser Forming of Compliant Mechanisms

Author:

Ames Daniel C.1,Smith Gabriel L.2,Lazarus Nathan2,Howell Larry L.1,Magleby Spencer P.1

Affiliation:

1. Brigham Young University , Provo, UT 84602

2. U.S. Army Research Laboratory , Adelphi, MD 20783

Abstract

AbstractSmall-scale flexible (or compliant) mechanisms are valuable in replacing rigid components while retaining comparable motion and behavior. However, fabricating such mechanisms on this scale (from 0.01 to 10 cm) proves difficult, especially with thin sheet metals. The manufacturing method of laser forming, which uses a laser to cut and bend metal into desired shapes, could facilitate this fabrication. However, specific methods for designing mechanisms formed by lasers need to be developed. This work presents laser forming as a means for creating compliant mechanisms on this scale with thin sheet metal. The unique challenges for designing mechanisms to be laser formed are explored, and new adaptations of existing designs are fabricated and discussed. The design of basic “building-block” features is developed for several mechanisms: a parallel-guided mechanism, a cross-axis flexural pivot, a lamina emergent torsional (LET) joint array, a split-tube flexure, and a bi-stable switch. These mechanisms are shown to perform repeatable behavior and motion comparable to existing nonlaser-formed versions. The further possibilities for fabricating compliant mechanisms with laser forming are explored, as advanced applications can benefit from using lasers to create compliant mechanisms from thin sheet metal.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3