Affiliation:
1. Department of Biomedical Engineering, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, WI 53226
2. Department of Neurosurgery, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, WI 53226
Abstract
Abstract
The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.
Funder
National Highway Traffic Safety Administration
Subject
Physiology (medical),Biomedical Engineering
Reference31 articles.
1. Seating Positions and Activities in Highly Automated Cars–a Qualitative Study of Future Automated Driving Scenarios,2017
2. Kinematic and Injury Response of Reclined PMHS in Frontal Impacts;Stapp Car Crash J.,2020
3. Investigation of Potential Injury Patterns and Occupant Kinematics in Frontal Impact With PMHS in Reclined Postures;SAE,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献