Efficient Control of a Switched Inertance Hydraulic Converter With a Time-Varying Load

Author:

Yuan Chenggang1,Plummer Andrew1,Pan Min1

Affiliation:

1. Centre for Power Transmission & Motion Control; Department of Mechanical Engineering, University of Bath , Bath BA2 7AY, UK

Abstract

Abstract Digital hydraulics is a novel alternative to proportional or servovalve-controlled systems in fluid power engineering, providing hydraulic systems with high-energy efficiency, good controllability, and insensitivity to contamination. Switched inertance hydraulic converters (SIHCs) are new digital hydraulic devices that can adjust flow and pressure by digital switching instead of throttling the flow. In this paper, an efficient closed-loop control system is proposed for SIHCs subject to time-varying loading conditions in which the load pressure and/or flow varies with time. The control system is designed to operate SIHCs at optimized switching frequencies and ratios that maximize system efficiency when the load varies. With the proposed controller, the SIHC can effectively adapt to the time-varying load and has achieved up to 10% efficiency improvement and up to 65% pressure ripple reduction without affecting the system's dynamic responses, compared with using a nonoptimized controller. The work shows the feasibility and advantages of simultaneously controlling the switching ratio and switching frequency of SIHCs with a time-varying load. As time-varying loading conditions are commonly found in hydraulic applications, the research outcomes constitute an important aspect in the design and development of highly efficient SIHCs and their practical use in hydraulic machinery.

Funder

China Scholarship Council

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference39 articles.

1. Efficient Control of a Switched Inertance Hydraulic Converter With a Time-Varying Load,2021

2. Discussion: Is the Future of Fluid Power Digital?;P. I. Mech. Eng. I-J Sys.,2012

3. Engineering Research in Fluid Power: A Review;J. Zhejiang Univ-SC A,2015

4. Digital Switched Hydraulics;Front. Mech. Eng.,2018

5. A Review of Switched Inertance Hydraulic Converter Technology;ASME J. Dyn. Syst. Meas. Control,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3