Design and Validation of a State-Dependent Riccati Equation Filter for State of Charge Estimation in a Latent Thermal Storage Device

Author:

Shanks Michael1,Inyang-Udoh Uduak1,Jain Neera1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract Latent thermal energy storage (TES) devices could enable advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC or providing supplemental heat rejection in transient thermal management systems. However, real-time feedback control of such devices is currently limited by the absence of suitable state of charge estimation techniques, given the nonlinearities associated with phase change dynamics. In this paper, we design and experimentally validate a state-dependent Riccati equation (SDRE) filter for state of charge estimation in a phase change material (PCM)-based TES device integrated into a single-phase thermal-fluid loop. The advantage of the SDRE filter is that it does not require linearization of the nonlinear finite volume model; instead, it uses a linear parameter-varying system model which can be quickly derived using graph-based methods. We leverage graph-based methods to prove that the system model is uniformly detectable, guaranteeing that the state estimates are bounded. Using measurements from five thermocouples embedded in the PCM of the TES and two thermocouples measuring the fluid temperature at the inlet and outlet of the device, the state estimator uses a reduced-order finite volume model to determine the temperature distribution inside the PCM and in turn, the state of charge of the device. We demonstrate the state estimator in simulation and on experimental data collected from a thermal management system testbed to show that the state estimation error converges near zero and remains bounded.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference38 articles.

1. Control of a Hybrid Thermal Management System: A Heuristic Strategy for Charging and Discharging a Latent Thermal Energy Storage Device,2022

2. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration;Appl. Therm. Eng.,2015

3. Hierarchical Hybrid MPC for Management of Distributed Phase Change Thermal Energy Storage,2020

4. State and State of Charge Estimation for a Latent Heat Storage;Control Eng. Pract.,2018

5. Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank;Energies,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3