Application of the Hydrogen-Bubble Technique for Velocity Measurements in Thin Liquid Films

Author:

Thomas W. C.1,Rice J. C.1

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va.

Abstract

A unique adaptation of the hydrogen-bubble flow visualization method was applied to measure velocity profiles and film thicknesses of very thin films on an inclined plane wall. Data were obtained in the three flow regions for a developing falling film with an initially uniform velocity profile and thickness ≤0.1 in. The measured profiles compared more favorably with parabolic profiles in the intermediate fully developed region than in the initial developing region. However, measured film thicknesses compared favorably with a simplified solution of the integral momentum equation based on parabolic velocity profiles. The results confirm the theoretical prediction that a relatively long distance may be required even for a thin film before nonaccelerating flow with a constant film thickness is obtained and Nusselt’s classical analysis applies. The experimental technique was shown to be a practical experimental method for obtaining data for the two-dimensional laminar flow of thin liquid films.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addition of Foreign Materials into Gaseous and Liquid Flows;Flow Visualization;1987

2. Modeling of wavy flow in inclined thin films;Chemical Engineering Science;1983

3. Velocity profile in "calming zone" of falling liquid films on inclined plates.;JOURNAL OF CHEMICAL ENGINEERING OF JAPAN;1979

4. Developing flow on a vertical wall;Journal of Fluid Mechanics;1977-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3