Interval Reliability Analysis

Author:

Du Xiaoping1

Affiliation:

1. University of Missouri at Rolla, Rolla, MO

Abstract

Traditional reliability analysis uses probability distributions to calculate reliability. In many engineering applications, some nondeterministic variables are known within intervals. When both random variables and interval variables are present, a single probability measure, namely, the probability of failure or reliability, is not available in general; but its lower and upper bounds exist. The mixture of distributions and intervals makes reliability analysis more difficult. Our goal is to investigate computational tools to quantify the effects of random and interval inputs on reliability associated with performance characteristics. The proposed reliability analysis framework consists of two components — direct reliability analysis and inverse reliability analysis. The algorithms are based on the First Order Reliability Method and many existing reliability analysis methods. The efficient and robust improved HL-RF method is further developed to accommodate interval variables. To deal with interval variables for black-box functions, nonlinear optimization is used to identify the extreme values of a performance characteristic. The direct reliability analysis provides bounds of a probability of failure; the inverse reliability analysis computes the bounds of the percentile value of a performance characteristic given reliability. One engineering example is provided.

Publisher

ASMEDC

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3