A Novel Wheel-Soil Interaction Model for Off-Road Vehicle Dynamics Simulation

Author:

Chan Brendan J.1,Sandu Corina1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

This work establishes a semi-empirical wheel-soil interaction model, developed in the framework of plasticity theory and equilibrium analysis, to be used in vehicle dynamics simulations. Vehicle-terrain interaction is a complex phenomena governed by soil mechanical behavior and tire deformation. The application of soil load bearing capacity theory is used in this study to determine the tangential and radial stresses on the soil-wheel interface. Using semi-empirical data, the tire deformation geometry is determined to establish the drawbar pull, tractive force, and wheel load. To illustrate the theory developed, two important case studies are presented: a rigid wheel and a flexible tire on deformable terrain; the differences between the two implementations are discussed. The outcome of this work shows promising results which indicate that the modeling methodology presented could form the basis of a three-dimensional off-road tire model. In an off-road three-dimensional tire model, the traction behavior should include shear forces arising from the surface shear with the soil as well as the bulldozing effect during turning maneuvers.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3