Three-Dimensional Navier–Stokes Computation of Turbomachinery Flows Using an Explicit Numerical Procedure and a Coupled k–ε Turbulence Model

Author:

Kunz R. F.1,Lakshminarayana B.1

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802

Abstract

An explicit, three-dimensional, coupled Navier–Stokes/k–ε technique has been developed and successfully applied to complex internal flow calculations. Several features of the procedure, which enable convergent and accurate calculation of high Reynolds number two-dimensional cascade flows, have been extended to three dimensions, including a low Reynolds number compressible form of the k–ε turbulence model, local time-step specification based on hyperbolic and parabolic stability requirements, and eigenvalue and local velocity scaling of artificial dissipation operators. A flux evaluation procedure, which eliminates the finite difference metric singularity at leading and trailing edges on H- and C-grids, is presented. The code is used to predict the pressure distribution, primary velocity, and secondary flows in an incompressible, turbulent curved duct flow for which CFD validation quality data are available. Also, a subsonic compressor rotor passage, for which detailed laser, rotating hot-wire, and five-hole pressure probe measurements have been made is computed. Detailed comparisons between predicted and measured core flow and near-wall velocity profiles, wake profiles, and spanwise mixing effects downstream of the rotor passage are presented for this case. It is found that the technique provides accurate and convergent engineering simulation of these complex turbulent flows.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3