The Shear-Driven Fluid Motion Using Oscillating Boundaries

Author:

Shakhawath Hossain Md.1,Daidzic Nihad E.2

Affiliation:

1. Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada

2. AAR Aerospace Consulting, L.L.C., P.O. Box 208, Saint Peter, MN 56082–0208

Abstract

A classical Stokes’ second problem has been known for a long time and represents one of the few exact solutions of nonlinear Navier-Stokes equations. However, oscillatory flow in a semi-infinite domain of Newtonian fluid under harmonic boundary excitation only leads to fluid wind-milling back and forth in close wall vicinity. In this study, we are presenting the mathematical model and the numerical simulations of the Newtonian fluid and the shear-thinning non-Newtonian blood-mimicking fluid flow. Positive flow rates were obtained by periodic yet nonharmonic oscillatory motion of one or two infinite boundary flat walls. The oscillatory flows in semi-infinite or finite 2D geometry with sawtooth or periodic rectified-sine boundary conditions are presented. Rheological human blood models used were: Power-Law, Sisko, Carreau, and Herschel-Bulkley. A one-dimensional time-dependent nonlinear coupled conservative diffusion-type boundary layer equations for mass, linear momentum, and energy were solved using the finite-differences method with finite-volume discretization. It was possible to test the accuracy of the in-house developed computational programs with the few isothermal flow analytical solutions and with the celebrated classical Stokes’ first and second problems. Positive flow rates were achieved in various configurations and in absence of the adverse pressure gradients. Body forces, such as gravity, were neglected. The calculations utilizing in-phase sawtooth and rectified-sine wall excitations resulted in respectable net flow which stabilizes and becomes quasi-steady, starting from rest, after three to ten periods depending on the fluid rheology. It was assumed that rapid return stroke of the wall actuator resulted in total wall slip while forward wall motion existed with no-slip boundary condition. Shear “driving” and “driven” fluid regions were identified. The shear-thinning fluid rheology delivered many interesting results, such as pluglike flow. Constructive interference of diffusive penetration layers from multiple flat surfaces could be used as practical pumping mechanism in micro-scales.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3