Design, Multi-Point Optimization, and Analysis of Diffusive Stator Vanes to Enable Turbine Integration Into Rotating Detonation Engines

Author:

Grasa Sergio1,Paniagua Guillermo2

Affiliation:

1. Purdue University School of Aeronautics and Astronautics, , West Lafayette, IN 47907

2. Purdue University School of Mechanical Engineering, , West Lafayette, IN 47907

Abstract

Abstract Pressure gain combustion is considered a possible path toward improved thermal cycle efficiency and reduced carbon emissions. However, ad hoc turbine designs are required to maximize the thermodynamic potential; the new turbomachinery should be suited for the oscillations in flow conditions generated by the detonation combustor, which are very different from conventional gas turbines. This paper investigates the design, optimization, and analysis of diffusive stator vanes operating under large inlet flow angles in the high-subsonic regime. First, the design methodology is outlined, focusing on the geometric requirements to ingest high Mach number flow and the parametric modeling of the endwall and the 3D vane pressure and suction sides. Then, the impact of the inlet flow angle on the flow field and vane design is studied through a multi-point, multi-objective optimization with three different inlet angles, performed using steady Reynolds-averaged Navier–Stokes simulations. Remarkable reductions in pressure loss and stator-induced rotor forcing are attained while maintaining an extensive operating envelope and high flow turning. Moreover, several design guidelines are provided based on the analysis of the optimized geometries. Finally, the effectiveness of the proposed methodology is verified with an unsteady assessment of the baseline and optimized vane designs.

Funder

U.S. Department of Energy

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3