An Improved Series Expansion of the Solution to the Moving Oscillator Problem

Author:

Pesterev A. V.1,Bergman L. A.2

Affiliation:

1. Institute for Systems Analysis, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 9, Moscow, 119034 Russia

2. Aeronautical and Astronautical Engineering Department, University of Illinois, Urbana, Illinois 61801

Abstract

The problem of calculating the dynamic response of a one-dimensional distributed parameter system excited by an oscillator traversing the system with an arbitrarily varying speed is investigated. An improved series representation for the solution is derived that takes into account the jump in the shear force at the point of the attachment of the oscillator, which makes it possible to efficiently calculate the distributed shear force and, where applicable, bending moment. The improvement is achieved through the introduction of the “quasi-static” solution, which is an approximation to the desired solution, and is also based on the explicit representation of the solution of the moving oscillator problem as the sum of the solution of the corresponding moving force problem and that of the problem of vibration of the distributed system subject to the elastic coupling force. Numerical results illustrating the efficiency of the method are presented. [S0739-3717(00)01001-1]

Publisher

ASME International

Subject

General Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3