Affiliation:
1. Nanyang Technological University Graduate Hall 2 Singapore, 637121 China
Abstract
Abstract
Exploring the locomotion of creatures is a challenging task in bionic robots, and the existing iterative design methods are mainly based on one or two characteristics to optimize robots. However, it is hard to obtain other features. Here, we introduced the thinking of system identification theory to the bionic robots, averting the exploration of the dynamics and reducing the difficulty of design greatly. A one-DOF six-bar mechanism (Watt I) was designated as the model to be identified, and it was divided into two parts, i.e. a one-DOF four-bar linkage and a three-DOF series arm. Then we formed constraints and a loss function. The parameters of the model were identified based on the kinematic data of a marmoset jumping. As a result, we obtained the desired model. Then, a prototype derived from the model was fabricated, and the experiments verified the effectiveness of the method. Our method also can be applied to other motion simulation scenarios.