Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow

Author:

Ling Julia1,Ryan Kevin J.2,Bodart Julien3,Eaton John K.2

Affiliation:

1. Mechanical Engineering Department, Stanford University, Stanford, CA 94305 e-mail:

2. Mechanical Engineering Department, Stanford University, Stanford, CA 94305

3. ISAE, University of Toulouse, Toulouse 31400, France

Abstract

Algebraic closures for the turbulent scalar fluxes were evaluated for a discrete hole film cooling geometry using the results from a high-fidelity large eddy simulation (LES). Several models for the turbulent scalar fluxes exist, including the widely used gradient diffusion hypothesis (GDH), the generalized GDH (GGDH), and the higher-order GDH (HOGGDH). By analyzing the results from the LES, it was possible to isolate the error due to these turbulent mixing models. Distributions of the turbulent diffusivity, turbulent viscosity, and turbulent Prandtl number were extracted from the LES results. It was shown that the turbulent Prandtl number varies significantly spatially, undermining the applicability of the Reynolds analogy for this flow. The LES velocity field and Reynolds stresses were fed into a Reynolds-averaged Navier–Stokes (RANS) solver to calculate the fluid temperature distribution. This analysis revealed in which regions of the flow various modeling assumptions were invalid and what effect those assumptions had on the predicted temperature distribution.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3