An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebound

Author:

Whitaker Steven M.1,Bons Jeffrey P.2

Affiliation:

1. Honeywell Aerospace, Phoenix, AZ 85034

2. The Ohio State University Aerospace Research Center, , Columbus, OH 43235

Abstract

Abstract A methodology for informing physics-based impact and deposition models through the use of novel experimental and analysis techniques is presented. Coefficient of restitution (CoR) data were obtained for Arizona Road Dust (ARD), AFRL02 dust, and each component of AFRL02 impacting a Hastelloy X plate at a variety of flow temperatures (295–866 K), surface temperatures (295–1255 K), particle velocities (0–100 m/s), and impact angles (0–90 deg). High speed particle shadow velocimetry (PSV) allowed individual impact data to be obtained for more than 8 million particles overall, corresponding to 20 combinations of particle composition, flow temperature, and surface temperature. The experimental data were applied to an existing physics-based particle impact model to assess its ability to accurately capture the physics of particle impact dynamics. Using the experimental data and model predictions, two improvements to the model were proposed. The first defined a velocity-dependent “effective yield strength,” designed to account for the effects of strain hardening and strain rate during impact. The second introduces statistical spread to the model output, accounting for the effect of randomizing variables such as particle shape and rotation. Both improvements were demonstrated to improve the model predictions significantly. Applying the improved model to the experimental data sets, along with known temperature-dependent material properties such as the elastic modulus and particle density, allowed the temperature dependence of the effective yield strength to be determined. It was found that the effective yield strength is not a function of temperature over the range studied, suggesting that changes in other properties are responsible for differences in rebound behavior. The improved model was incorporated into a computational simulation of an impinging flow to assess the effect of the model improvements on deposition predictions, with the improved model obtaining deposition trends that more closely match what has been observed in previous experiments. The work performed serves as a stepping stone towards further improvement of physics-based impact and deposition models through refinement of other modeled physical processes.

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

1. Global Estimates of Ambient Fine Particulate Matter Concentrations From Satellite-Based Aerosol Optical Depth: Development and Application;Donkelaar;Environ. Health Perspect.,2010

2. Gas Turbine Compressor Blade Fouling Mechanisms;Kurz;Pipeline Gas J.,2011

3. Compressor Erosion and Performance Deterioration;Tabakoff;ASME J. Fluid Eng.,1987

4. An Approach for Evaluation of Gas Turbine Deposition;Wenglarz;ASME J. Eng. Gas Turbines Power,1992

5. Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines;Kim;ASME J. Eng. Gas Turbines Power,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3