Gas Turbine Combined Cycle Range Enhancer—Part 2: Performance Demonstration

Author:

Reboli Tommaso1,Ferrando Marco1,Gini Lorenzo1,Mantelli Luca1,Sorce Alessandro1,Traverso Alberto1

Affiliation:

1. Dipartimento di Ingegneria Meccanica, Energetica, Gestionale, dei Trasporti (DIME sez. MASET), Università degli Studi di Genova, Thermochemical Power Group , Genova 16145, Italy

Abstract

Abstract In the current energy scenario, gas turbine combined cycles (GTCCs) are considered key drivers for the transition towards fossil-free energy production. However, to meet this goal, they must be able to cope with rapid changes in power request and extend their operating range beyond the limits imposed by the environmental conditions in which they operate. The European H2020 project PUMP-HEAT (Pump-Heat Project, 2021, D4. 6 – “Validation Results in Energy -Hub of MPC With Cold Thermal Storage,”) aims at achieving this goal thanks to the integration of the GTCC with a heat pump (HP) and a thermal energy storage (TES). To study this setup, a dedicated cyber-physical facility was built at the University of Genova laboratories, Italy. The plant includes physical hardware, such as a 100kWel microgas turbine, (mGT), a 10 kWel HP and a 180 kWh change phase material-based TES. These real devices are up-scaled thanks to performance maps and real-time dynamic models to emulate a full-scale heavy-duty 400 MW GTCC with a cyber-physical approach. The control system determines the optimal configuration of the whole plant and the operative point of the real devices to minimize the mismatch with a real electric power demand curve. Different operative configurations are tested: one for reducing the power production of the plant below the minimum environmental load (MEL) and two for augmenting the plant maximum power under certain ambient conditions. From the analysis of these tests, it is possible to verify the effectiveness of the proposed concept and characterize the transient behavior of the real components.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference13 articles.

1. Combined Cycle, Heat Pump, and Thermal Energy Storage Integration: Techno–Economic Sensitivity to Market and Climatic Conditions Based on a European and United States Assessment,2022

2. Power Augmentation Technologies: Part I — Literature Review,2015

3. Gas Turbine Combined Cycle Range Enhancer - Part 1: Cyber-Physical Setup (to Be Published),2022

4. Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications;Appl. Therm. Eng.,2003

5. Thermal Energy Storage for Gas Turbine Power Augmentation,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3