Investigation of Gas Turbine Internal Cooling Using Supercritical CO2—Effect of Surface Roughness and Channel Aspect Ratio

Author:

Roy Arnab1,Searle Matthew1,Ramesh Sridharan1,Straub Douglas2

Affiliation:

1. National Energy Technology Laboratory, NETL Support Contractor , 3610 Collins Ferry Road, Morgantown, WV 26507

2. National Energy Technology Laboratory , 3610 Collins Ferry Road, Morgantown, WV 26507

Abstract

Abstract In this paper, an experimental and numerical investigation of internal cooling channels with rib turbulators is presented with sCO2 as the working fluid at process conditions (pressure-20.7 MPa and temperature up to 150 °C). The effect of channel aspect ratio up to 2:1 on thermal-hydraulic performance is explored in additively manufactured rectangular channels and square channels, both with and without 60 deg ribs on the top and bottom sides. The Wilson-plot method is employed to experimentally measure channel-averaged Nusselt number over a Reynolds number range up to 370,000. The friction factor is calculated from pressure drop and mass flow rate and additionally, the overall thermal performance factor (TPF) is reported. A companion computational fluid dynamics (CFD) simulation is performed for the rib turbulated cooling configurations reported in the experiments using the Reynolds average Navier–Stokes-based turbulence model. The objective of the numerical study is to gain insight into the local heat transfer augmentation in the ribbed channels as a result of varying the aspect ratio, channel configuration (square versus rectangular), operating conditions (Reynolds number) and the surface roughness, an inherent outcome of the additive manufacturing process. Surface roughness is simulated using sand grain roughness height (KS) calculated from the experimental data, and a comparison is presented with the corresponding channel configuration with varying surface roughness heights starting from smooth surfaces (KS = 0). Experimental results indicate that the heat transfer augmentation is negligible in the rectangular channels with ribs on the long side compared to the square channel. However, it is enhanced by 60% in comparison to placing ribs on the shorter side. The TPF remains constant at around 1 for the entire range of Reynolds numbers consistent with prior work at the National Energy Technology Laboratory (NETL). The simulation results highlight that increased surface roughness can have a favorable considerable influence on Nusselt number and overall thermal performance enhancement.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3