A Study on Converging-Diverging Nozzle Design for Supersonic Spraying of Liquid Droplets Toward Nanocoating Applications

Author:

Akin Semih1,Wu Puyuan1,Nath Chandra23,Chen Jun1,Jun Martin Byung-Guk45

Affiliation:

1. Purdue University School of Mechanical Engineering, , West Lafayette, IN 47907

2. Purdue University School of Mechanical Engineering, , West Lafayette, IN 47907 ; , West Lafayette, IN 47907

3. Maijker Corp. School of Mechanical Engineering, , West Lafayette, IN 47907 ; , West Lafayette, IN 47907

4. Purdue University School of Mechanical Engineering; Indiana Manufacturing Competitiveness Center (In-Mac), , West Lafayette, IN 47907 ; , West Lafayette, IN 47907

5. Maijker Corp. School of Mechanical Engineering; Indiana Manufacturing Competitiveness Center (In-Mac), , West Lafayette, IN 47907 ; , West Lafayette, IN 47907

Abstract

Abstract Supersonic cold spray (CS) of functional nanomaterials from atomized droplets has attracted significant attention in advanced thin-film coating as it enables particle deposition with high-adhesion strength. In CS, optimum design of the supersonic nozzle (i.e., converging-diverging nozzle) is essential for accelerating particles to desired velocities. However, research on the nozzle design for supersonically spraying of “liquid droplets” for nanocoating applications is limited. To this end, we investigate the effect of nozzle geometrical parameters, including throat diameter, exit diameter, and divergent length on droplets impact velocity by numerical modeling and experimental validation, followed by a case study on nanocoating. The discrete-phase modeling was employed to study droplets’ flow behavior in continuous gas flow for various nozzle geometries. The results reveal that the nozzle expansion ratio, defined as a function of throat and exit diameters, has a significant influence on droplet velocity, followed by divergent length. Noteworthy, to correctly accelerate “low-inertia liquid microdroplets,” it was found that the optimum nozzle expansion ratio for axisymmetric convergent-divergent nozzles should be in a range of 1.5–2.5, which is different and way smaller than the recommended expansion ratio (i.e., 5–9) for CS of conventional micron-scale “metal” powders. Based on the simulation results, an optimum design of supersonic nozzle is established and prototyped for the experimental studies. Particle image velocimetry (PIV) was used to experimentally investigate the spray flow field and to validate the numerical modeling results. Moreover, coating experiments using the optimized nozzle confirmed the effective supersonic spraying of droplets containing nanoparticles, thereby showing the potential for advanced nanocoating applications.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3