Effect of Rarefaction on Thermal and Chemical Non-Equilibrium for Hypersonic Flow With Different Enthalpy and Catalytic Wall Conditions

Author:

Kumar Shubham1,Assam Ashwani1

Affiliation:

1. Indian Institute of Technology Patna Department of Mechanical Engineering, , Patna 801106 , India

Abstract

AbstractCompressibility and rarefaction effect plays an essential role in the design and study of objects experiencing hypersonic flows. The presence of chemical and thermal non-equilibrium in hypersonic flows increases the complexity of estimating aerothermodynamic properties, which are essential for developing thermal protection systems and the aerothermodynamic design of hypersonic vehicles. In this study, the hy2Foam solver, developed in an OpenFOAM framework by hyStrath group, is used to understand the effect of Knudsen number (which in turn depends on the altitude) and freestream enthalpy variation on the surface aerothermodynamic properties such as pressure, heat flux, velocity slip, temperature jump, and flow field variables such as species concentration and temperature, in five-species air flow over a cylinder, for both noncatalytic and fully catalytic wall conditions. The novelty of the work lies in reporting the effect of rarefaction on thermal and chemical non-equilibrium (associated with hypersonic flows), and thus on the surface properties under different enthalpy and wall catalytic conditions. It has been shown that the rarefaction effect is more pronounced on the vibrational temperature component and for high enthalpy gas. The surface wall heat flux and the chemical reaction rate among the species decrease with rarefaction. The skin friction coefficient is one of the most sensitive properties, while the pressure coefficient has been the least susceptible to non-equilibrium effects. The stagnation points heat flux at different Knudsen numbers shows good agreement with the existing correlation in literature for both low and high enthalpy flows, which further establishes the validity of the study done in this work.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference46 articles.

1. Hypersonic and High-Temperature Gas Dynamics, Third Edition

2. A Numerical Study of Shock and Heating With Rarefaction for Hypersonic Flow Over a Cylinder;Assam;ASME J. Heat Mass Trans.,2020

3. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions;Hollis,2014

4. COOLFluiD: An Open Computational Platform for Multi-Physics Simulation and Research;Lani,2013

5. Casseau, V. , 2017, “An Open-Source CFD Solver for Planetary Entry,” Ph.D. thesis, University of Strathclyde, Strathclyde, UK.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3