Numerical Investigation on a New Concept of Shock Vector Control Nozzle

Author:

Jingwei Shi1,Zhanxue Wang1,Li Zhou1,Xiaobo Zhang1

Affiliation:

1. Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine, School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China e-mail:

Abstract

Shock vector control (SVC) based on transverse jet injection is one of the fluidic thrust vectoring (FTV) technologies, and is considered as a promising candidate for the future exhaust system working at high nozzle pressure ratio (NPR). However, the low vector efficiency (η) of the SVC nozzle remains an important problem. In the paper, a new method, named as the improved SVC, was proposed to improve the vector efficiency (η) of a SVC nozzle, which enhances the vector control of primary supersonic flow by adopting a bypass injection. It needs less secondary flow from high pressure component of an aero-engine and has smaller influence on the working character of an aero-engine. The flow mechanism of the improved SVC nozzle was investigated by solving three-dimensional Reynolds-averaged Navier--Stokes with shear stress transport (SST) κ–ω turbulence model. The shock waves, jets-primary flow interactions, flow separation, and vector performance were analyzed. The influences of aerodynamic and geometric parameters, namely, NPR, secondary pressure ratio (SPR), and bypass injection position (Xj.ad.) on flow characteristics and vector performance were investigated. Based on the design of experiment (DOE), the response surface methodology (RSM) and the simulation model of an aero-engine, a method to estimate the coupling performance of the improved SVC nozzle and an aero-engine was studied, and a new balance relationship between the improved SVC nozzle and an aero-engine was established. Results shows that (1) with the assistance of bypass injection, the jet penetration and the capability of vector control are largely improved, resulting in a vector efficiency (η) of 1.98 deg/%-ω at the designed NPRD = 13.88; (2) in a wide range of operating conditions, larger vector angle (δp), higher thrust coefficient (Cfg), and higher vector efficiency (η) of the improved SVC nozzle were obtained, (3) in the coupling process of the improved SVC nozzle and an aero-engine, a δp of 18.1 deg was achieved at corrected secondary flow ratio of 10% and corrected bypass ratio of 6.98%, and the change of the thrust and the specific fuel consumption (SFC) were within 12%, which is better than the coupling performance of a SVC nozzle and an aero-engine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3