Research on Prediction Methods for Eccentric Wear of the Slipper Pair in Axial Piston Pumps and Lubrication Performance Analysis

Author:

Du Zunling1,Zhang Yimin1,Lu Wenjia1,Huang Weibo1

Affiliation:

1. Zhaoqing University College of Mechanical and Automotive Engineering, , Zhaoqing 526061 , China

Abstract

Abstract The axial piston pump (APP) is the core power component of hydraulic systems. Its friction pair wear can cause the degradation of piston pump performance until the function is completely lost or the service life is terminated. The slipper pair, prone to wear failure, is selected as the research object in this paper. The prediction method for the eccentric wear of the slipper pair is established, and the gradual change rules of the performance with wear accumulation are explored. The micro-surface rough peak contact and the stress state of the slipper pair are analyzed, and the mixed lubrication model of the slipper pair is established based on the elastohydrodynamic lubrication (EHL) model of the slipper pair. Grid discretization of a sealing belt of the slipper pair is carried out based on two-body abrasive wear and Archard adhesive wear models to improve the prediction method for eccentric wear of the slipper pair. The effectiveness of the proposed method is verified by a surface morphology analysis of the worn slipper. The results showed that the wear depth and wear width of the outer edge of the slipper bottom surface are positively correlated with the oil discharge pressure and the inclination angle of the swashplate, and negatively correlated with the rotational speed and the dynamic oil viscosity. The outer edge of the slipper is wedged after eccentric wear, and the hydrodynamic effect of the lubricating oil film of the slipper pair is enhanced. Hence, proper wear can improve the lubrication performance of the slipper pair.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3