Affiliation:
1. Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, Mechanical Engineering Building J07, The University of Sydney, Sydney, NSW 2006, Australia
2. Fellow ASME
Abstract
In recent years, ferroelectromagnetic laminated composites have aroused worldwide research interest. In this paper, we developed a closed-form solution for antiplane mechanical and in-plane electric and magnetic fields for a crack between two dissimilar magnetoelectroelastic layers of finite thickness. Explicit expressions for stresses, electric and magnetic fields, together with their intensity factors are obtained for the two extreme cases of an impermeable and a permeable crack. Solutions for some special cases, such as a homogeneous magnetoelectroelastic layer, two magnetoelectroelastic layers with opposite poling directions, and a piezoelectric layer bonded to a piezomagnetic layer are also obtained. Explicit relations between the field intensity factors and the energy release rates for the interface crack are provided.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献