A Kalina Cycle Application for Power Generation

Author:

Ibrahim Mounir B.1,Kovach Ronald M.2

Affiliation:

1. Cleveland State University, Cleveland, OH

2. Cleveland Electric Illuminating Co., Cleveland, OH

Abstract

A multi-component (NH3/H2O) Kalina type cycle that utilizes the exhaust from a gas turbine is investigated in this paper. The turbine inlet pressure, 5.96∗106 N/m2 (850 psig), and temperature, 755.372 K (900 F), were kept constant as well as the working fluid temperature at the condenser outlet, 290 K (62.3 F). The NH3 mass fraction at the turbine inlet was varied along with the separator temperature, and the effects on the cycle efficiency were studied. The relationship between turbine inlet flow and separator inlet flow is shown in this paper in addition to the upper and lower NH3 mass fraction bounds. The multi-component working fluid cycle investigated is 10% to 20% more efficient than a Rankine cycle at the same border conditions.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exergo-economic comparison of waste heat recovery cycles for a cement industry case study;Energy Conversion and Management: X;2022-01

2. Parametric Analysis and Optimisation of Efficiency of a Kalina Cycle with Turbine Staging;Journal of The Institution of Engineers (India): Series C;2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3