The Effect of the Nozzle Top Lip Thickness on a Two-Dimensional Wall Jet

Author:

McIntyre Rory1,Savory Eric1,Wu Hao2,Ting David S.-K.3

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada

2. Turbulence and Energy Laboratory, Centre for Engineering Innovation, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada

3. Turbulence and Energy Laboratory, Centre for Engineering Innovation, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada e-mail:

Abstract

The effect of the nozzle top lip thickness on a two-dimensional wall jet was examined experimentally in a wind tunnel using hot-wire anemometry. Lip thicknesses of 0.125b, 0.5b, 1b, and 2b, where b is the jet nozzle height, were considered at a Reynolds number of 30,700 based on the jet nozzle height and jet velocity. Noticeable differences in the flow profiles were observed at the jet outlet, but by 10b downstream these differences became insignificant. Different lip thicknesses resulted in different maximum velocity decay rates. The spread of the wall jet was found to be insensitive to the lip thickness.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3