An Improved Closed-Loop Heat Extraction Method From Geothermal Resources

Author:

Dahi Taleghani Arash1

Affiliation:

1. Craft and Hawkins Department of Petroleum Engineering, Lousiana State University, Baton Rouge, LA 70810

Abstract

Disposal of produced water and induced earthquakes are two major issues that have endangered development of the geothermal energy as a renewable source of energy. To avoid these problems, circulation of a low-boiling working fluid in a closed loop has been proposed; however; since the major mechanism in this method for heat extraction is conduction rather than convection and additionally the heat conduction is limited to the wellbore surface. To overcome this shortcoming, the formation can be fractured with high conductivity material (for instance, silicon carbide ceramic proppants or cements with silane and silica fume as admixtures) to artificially increase the contact area between the “working fluid” and the reservoir. Our calculations show that fracturing increases the contact area by thousand times, additionally, the fracturing materials reinforce and stressed the formation, which reduce the risk of seismic activity due to temperature or pressure changes of the system during the production.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3