Numerical Investigation to Derive Correlations for Hydrodynamic Entrance Length in Very Low Reynolds Number Regime in Rectangular Microchannels

Author:

Ray Dustin R.1,Das Debendra K.1

Affiliation:

1. Department of Mechanical Engineering, University of Alaska Fairbanks, P.O. Box 755905, Fairbanks, AK 99775-5905

Abstract

Abstract A three-dimensional laminar flow model was used for 37 Reynolds numbers (0.1, 0.2…1, 2…10, 20…100, and 200…1000) through six rectangular microchannels (aspect ratios: 1, 0.75, 0.5, 0.25, 0.2, and 0.125) to develop correlations for hydrodynamic entrance length. The majority of the Reynolds numbers are in the low regime (Re < 100) to fulfill the need to determine the hydrodynamic entrance length for microchannels. Examination of the fully developed flow condition was considered using the velocity or fRe criteria. Numerical results from the present simulations were validated by comparing the fRe results. Two new correlations were developed from a vast amount of numerical data (222 simulations). The velocity criterion correlations predict entrance length with a mean error of 4.67% and maximum error of 10.28%. The fRe criterion generated better correlations and were developed as a function of aspect ratio to predict entrance length with a mean error less than 2% and maximum error of 5.75% for 0.1 ≤ Re ≤ 1000 and 0 ≤ α ≤ ∞.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3