Acceleration of a Physics-Based Machine Learning Approach for Modeling and Quantifying Model-Form Uncertainties and Performing Model Updating

Author:

Azzi Marie-Jo1,Ghnatios Chady2,Avery Philip3,Farhat Charbel4

Affiliation:

1. Stanford University Department of Mechanical Engineering, , 440 Escondido Mall, Stanford, CA 94305

2. Notre Dame University-Louaize Department of Mechanical Engineering, , P. O. Box 72, Zouk Mosbeh , Lebanon

3. Stanford University Department of Aeronautics and Astronautics, , 496 Lomita Mall, Stanford, CA 94305

4. Institute for Computational and Mathematical Engineering, Stanford University Department of Aeronautics and Astronautics; Department of Mechanical Engineering, , 496 Lomita Mall, Stanford, CA 94305

Abstract

Abstract The nonparametric probabilistic method (NPM) for modeling and quantifying model-form uncertainties is a physics-based, computationally tractable, machine learning method for performing uncertainty quantification and model updating. It extracts from data information not captured by a deterministic, high-dimensional model (HDM) of dimension N and infuses it into a counterpart stochastic, hyperreduced, projection-based reduced-order model (SHPROM) of dimension n ≪ N. Here, the robustness and performance of NPM are improved using a two-pronged approach. First, the sensitivities of its stochastic loss function with respect to the hyperparameters are computed analytically, by tracking the complex web of operations underlying the construction of that function. Next, the theoretical number of hyperparameters is reduced from O(n2) to O(n), by developing a network of autoencoders that provides a nonlinear approximation of the dependence of the SHPROM on the hyperparameters. The robustness and performance of the enhanced NPM are demonstrated using two nonlinear, realistic, structural dynamics applications.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3