A Film Thickness Analysis for Line Contacts Under Pure Rolling Conditions With a Non-Newtonian Rheological Model

Author:

Gecim B.1,Winer W. O.1

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga. 30332

Abstract

The non-Newtonian constitutive equation proposed by Winer and Bair [1] is applied in a conventional isothermal film thickness analysis of line contact lubrication of rolling elements. The present analysis provides four different dimensionless film thickness equations for four different regimes of lubrication. Due to the formulation technique used in deriving the governing pressure-gradient equation, the present study is recommended for high viscosity, high rolling speed, and low limiting shear stress cases where Newtonian models fail to match the experimental data. Comparison of the present film thickness equations with the Newtonian correspondences in each lubrication regime shows a considerable difference, but the analysis suffers from the fact that the limiting shear stress parameters of these high viscosity lubricants need to be determined experimentally. The present analysis assumes a reasonable range of limiting shear stress which is smaller than the corresponding values for low viscosity lubricants which are predominantly Newtonian in behavior (unless severe rolling and/or sliding with high loads is applied).

Publisher

ASME International

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3