Affiliation:
1. Engineering Mechanics Department, University of Kentucky, Lexington, Ky. 40506
2. Code 6382, Naval Research Laboratory, Washington, D.C. 20375
Abstract
Dynamic fracture is often studied by means of the dynamic tear (DT) test, which involves transverse impact by a mass on a beam. This process generates a complicated elastic wave pattern in the beam which, however, consists of two wave types: impact waves and reflected waves. The former are the compression wave radiating from the impact line and its diffractions at the notch end, while the latter are all waves originated by reflections from the beam surfaces. To gain insight into the role of specific waveforms in generating the fracture at the notch end in this process, the effects of the impact waves on the dynamic notch end stress field is studied. For both an idealized and an experimentally determined impact force, these waves are shown to initially place the notch end in compression. Moreover, even when a tensile stress state is eventually achieved, the stress intensity factor levels lie well below experimentally determined fracture toughness values. These results suggest that reflected waves generate the fracture, which agrees with experimental evidence.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献