A Stress Intensity Factor Tracer

Author:

Kim K.-S.1

Affiliation:

1. Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, Ill. 61801

Abstract

A new optical method, Stress Intensity Factor Tracer (SIFT), has been developed. The device measures continuously the real-time stress intensity factor variation, K1(t), of a moving crack tip using a single, stationary photodetector. The method uses the fact that any variation in K1(t) leads to a change in the intensity of light, I(t), impinging on a fixed finite area, Γ, on the focal plane. The focal plane is defined as the plane on which initially parallel light rays transmitted through a transparent fracture specimen (or reflected from the surface of an opaque specimen) are focused by a converging lens. Provided that the light detecting area, Γ, excludes the focal point, a simple relation, I(t) =B[K1(t)]4/3, has been obtained for a K1-dominant field. The constant, B, is a product of several experimental parameters including a “shape factor” of the sampling area, Γ, where I(t) is measured. A significant feature of this method is that I(t) is independent of the location of the crack tip in the illuminated zone on the specimen plane. The technique may therefore be applied to dynamic fracture studies without using high-speed photography. Only the constant, B, becomes a function of crack velocity for the dynamic K1-field. This paper presents the theoretical development of the SIFT method, including the wave optics of the system. Experimental results supporting the theory are included.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3