Modeling of Elastic Waves in Dynamically Loaded NiAl Bicrystals

Author:

Loomis Eric1,Peralta Pedro2,Swift Damian C.3

Affiliation:

1. Los Alamos National Laboratory, P.O. Box 1663, MS E526, Los Alamos, NM 87545

2. Department of Mechanical and Aerospace Engineering, Arizona State University, P.O. Box 876106, Tempe, AZ 85287-6106

3. Material Science and Technology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551

Abstract

Two methods have been used to simulate 2D elastic wave scattering in nickel aluminide (NiAl) bicrystals to study effects of grain boundaries and material anisotropy on elastic wave propagation. Scattering angles and amplitude ratios of the reflected and refracted waves produced at the grain boundary were calculated via slowness curves for both grains, which were plotted in the plane of incidence containing the grain boundary normal. From these curves, scattering angles were measured graphically and amplitude ratios were calculated based on the continuity of tractions and displacements at the boundary. To support these calculations, finite element simulations were performed with ABAQUS/EXPLICIT to obtain time- and space-dependent stresses. The results of each method correlated well with each other for four bicrystals. It was found that for bicrystals where the transmitted quasi-longitudinal (TQL) wave amplitude decreased across the boundary, diminished stresses were found in the finite element models for the same bicrystal. Conversely, where an increase in amplitude of the TQL wave was found, the finite element simulations showed that stress under the boundary increased. In general, the amplitude of the TQL wave was found to have a strong connection to the ratio of incident and TQL sound speeds. However, other directions in each grain are believed to contribute strongly to the overall scattering process since the pairs of bicrystals in this investigation had somewhat similar sound speeds. These findings correlated well with free surface cracking observed in a previous paper (Loomis, E., Peralta, P., Swift, D., and McClellan, K., 2005, Mater. Sci. Eng., Ser. A., 404(1-2), pp. 291–300), where cracks nucleated and propagated due to the focusing of scattered waves at the boundary. Specifically, in bicrystals oriented for shielding, the grain boundary was protected forcing cracks to grow outside of the shielded region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3