Investigation of Hydrogen Diffusion Characteristics of the Heat Affected Zone of 2.25Cr-1Mo-0.25V Steel by an Electrochemical Permeation Method

Author:

Song Xin1,Han Zelin1,Liu Bin2,Qin Mu1,Duo Yuancai3,Song Yan1,Cheng Guangxu1

Affiliation:

1. Xi'an Jiaotong University, Xi'an, China

2. Sinopec Shengli Oilfield, Dongying, China

3. Lan’zhou LS Heavy Equipment Co., Ltd, Lanzhou, China

Abstract

Abstract The heat affected zone (HAZ) of 2.25Cr-1Mo-0.25V welded joint is a critical part for the safety of hydrogenation reactors. Hydrogen has a significant effect on the HAZ, studying hydrogen diffusion characteristics, such as: hydrogen flux and the effective hydrogen diffusivity has a remarkable value in investigating the hydrogen-induced material degradation mechanisms. In this work, an electrochemical permeation method was applied to study the hydrogen diffusion characteristics of HAZ. Then, the metallographic microscope and a software “Image J” were used to analyze the density of grain boundaries of HAZ. The effect of the post–weld heat treatment (PWHT, i.e. annealing) on the hydrogen diffusion characteristics of HAZ was also been investigated. The results show that after PWHT, the effective hydrogen diffusivity of HAZ increases from 1.63 × 10−7cm2·s−1 to 3.68 × 10−7cm2·s−1, the hydrogen concentration decreases from 1.92 × 10−4mol·cm−3 to 1.09 × 10−4mol·cm−3, and the hydrogen trap density decreases from 3.00 × 1026m−3 to 0.76 × 1026m−3. Thus, PWHT can significantly reduce density of grain boundaries, thereby reducing the hydrogen trap density, enhancing the hydrogen diffusivity and reducing the hydrogen concentration.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3