Comparison and Assessment of the Creep-Fatigue and Ratcheting Design Methods for a Reference Gen3 Molten Salt Concentrated Solar Power Receiver

Author:

Barua B.1,Messner M. C.1,McMurtrey M. D.2

Affiliation:

1. Argonne National Laboratory, Argonne, IL

2. Idaho National Laboratory, Idaho Falls, ID

Abstract

Abstract The Concentrating Solar Power (CSP) Gen3 Demonstration Roadmap has recognized Supercritical carbon dioxide (sCO2) Brayton Cycle as the best-fit power cycle as it provides thermal efficiency benefits relative to the conventional Steam-Rankine cycles. However, to enable the integration of sCO2 Brayton Power Cycle, it is necessary to increase the outlet temperature of current molten salt CSP systems from 565°C to approximately 720°C. Increasing the temperature of the salt brings significant material and engineering challenges. Creep-fatigue damage accumulation and ratcheting deformation are important design considerations for receivers operating at high temperature due to frequent transient loads caused by diurnal cycling and thermal shocks from transitions between sun and cloud cover. In this work, a reference thermomechanical model of a Gen3 CSP receiver is developed to evaluate different creep-fatigue and ratcheting design approaches identified in Section III, Division 5, of ASME Boiler and Pressure Vessel Code. The design methods are then ordered based on design margin and ease of use. Design by elastic perfectly-plastic analysis is found to be the most conservative among the methods. Elastic analysis is the easiest to perform but the design calculations are extremely complicated. In contrast, design calculations are straight forward in inelastic analysis method but it requires developing a sophisticated inelastic constitutive model describing the material behavior. Several recommendations are made for developing creep-fatigue and ratcheting design rules for CSP systems.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3