Energy-Absorbing Capacity of Polyurethane/SiC/Glass-Epoxy Laminates Under Impact Loading

Author:

Balaganesan G.1,Akshaj Kumar V.2,Khan V. C.2,Srinivasan S. M.3

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Mechanical Engineering, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, India

3. Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India e-mail:

Abstract

This paper presents the energy absorption of target materials with combinations of polyurethane (PU) foam, PU sheet, SiC inserts, and SiC plate bonded to glass fiber reinforced composite laminate backing during impact loading. SiC inserts and SiC plates are bonded as front layer to enhance energy absorption and to protect composite laminate. The composite laminates are prepared by hand lay-up process and other layers are bonded by using epoxy. Low-velocity impact is conducted by using drop mass setup, and mild steel spherical nosed impactor is used for impact testing of target in fixed boundary conditions. Energy absorption and damage are compared to the target plates when subjected to impact at different energy levels. The energy absorbed in various failure modes is analyzed for various layers of target. Failure in the case of SiC inserts is local, and the insert under the impact point is damaged. However, in the other cases, the SiC plate is damaged along with fiber failure and delamination on the composite backing laminate. It is observed that the energy absorbed by SiC plate layered target is higher than SiC inserts layered target.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3