Exergy Analysis of Two Second-Generation SCGT Plant Proposals

Author:

Corti A.1,Failli L.1,Fiaschi D.1,Manfrida G.1

Affiliation:

1. Università degli Studi di Firenze, Firenze, Italy

Abstract

Two different power plant configurations based on a Semi-Closed Gas Turbine (SCGT) are analyzed and compared in terms of First and Second Law analysis. SCGT plant configurations allow the application of CO2 separation techniques to gas-turbine based plants and several further potential advantages with respect to present, open-cycle solutions. The first configuration is a second-generation SCGT/CC (Combined Cycle) plant, which includes inter-cooling (IC) between the two compression stages, achieved using spray injection of water condensed in a separation process removing vapor from the flue gases. The second configuration (SCGT/RE) combines compressor inter-cooling with the suppression of the heat recovery steam generator and of the whole bottoming cycle; the heat at gas turbine exhaust is directly used for gas turbine regeneration. The SCGT/CC-IC solution provides good efficiency (about 55%) and specific power output figures, on account of the spray inter-cooling; however, with this configuration the cycle is not able to self-sustain the CO2 removal reactions and amine regeneration process, and needs a substantial external heat input for this purpose. The SCGT/RE solution is mainly attractive from the environmental point of view: in fact, it combines the performance of an advanced gas turbine regenerative cycle (efficiency of about 49%) with the possibility of a self-sustained CO2 removal process. Moreover, the cycle configuration is simplified because the HRSG and the whole bottoming cycle are suppressed, and a potential is left for cogeneration of heat and power.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3