Effect of Fuel Composition on NOx Formation in Lean Premixed Prevaporized Combustion

Author:

Capehart Scott A.1,Lee John C. Y.1,Williams Joseph T.1,Malte Philip C.1

Affiliation:

1. University of Washington, Seattle, WA

Abstract

The effect of fuel composition on NOx formation in lean premixed prevaporized (LPP) combustion is examined using an atmospheric pressure jet-stirred reactor fitted with a prevaporizing-premixing chamber and liquid fuel atomizing nozzle. Four liquid fuels are studied, including the pure hydrocarbons n-heptane (C7H16) and n-dodecane (C12H26), No. 2 low sulfur diesel fuel oil (LSDFO#2) with 0.0195% sulfur and 0.0124% nitrogen by weight, and n-dodecane doped with n-ethylethylenediamine (C2H5NHCH2CH2NH2 or C4H12N2) to give 0.0096% nitrogen by weight in the doped fuel. For comparison, propane (C3H6) is burned. The combustion temperature range of the experiments is 1625 to 1925K, and the nominal residence time of the reactor is 3.5ms. The first objective of the work is to determine the effect which increasing fuel carbon number has on the NOx yield of high-intensity LPP combustion. For combustion at 1800K, an increase of 15 to 20% is measured in the NOx yield when the fuel is changed from C3H6 to C12H26. Comparison to earlier work on CH4 and C3H6 combustion in the jet-stirred reactor operating at 1800K shows essentially an identical increase in NOx yield between CH4 and C3H6 as between C3H6 and C12H26. The second objective of the work is to determine the conversion of fuel-nitrogen to NOx for the combustion of low nitrogen content fuels in high-intensity LPP combustion. The measurements indicate a fuel-nitrogen to NOx conversion of 70 to 100%. These conversion values should be regarded as preliminary since only two nitrogen-containing fuels have been examined and only one prevaporizer-premixer system has been used.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on Flashback Propensity of Syngas Premixed Flames;41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2005-07-10

2. Low NOx Combustion for Liquid Fuels: Atmospheric Pressure Experiments Using a Staged Prevaporizer-Premixer;Journal of Engineering for Gas Turbines and Power;2003-10-01

3. Issues for low-emission, fuel-flexible power systems;Progress in Energy and Combustion Science;2001-01

4. Fuel Effects on Lean Blowout and Emissions from a Well-Stirred Reactor;Journal of Propulsion and Power;1999-03

5. Emissions characteristics of liquid hydrocarbons in a well stirred reactor;33rd Joint Propulsion Conference and Exhibit;1997-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3