Affiliation:
1. University of Washington, Seattle, WA
Abstract
A probability density function/chemical reactor model (PDF/CRM) is applied to study how NOx emissions vary with mean combustion temperature, inlet air temperature, and pressure for different degrees of premixing quality under lean-premixed (LP) gas turbine combustor conditions. Inlet air temperatures of 550, 650 and 750 K, and combustor pressures of 10, 14 and 30 atm are examined in different chemical reactor configurations. Primary results from this study are: incomplete premixing can either increase or decrease NOx emissions, depending on the primary zone stoichiometry; an Arrhenius-type plot of NOx emissions may have promise for assessing the premixer quality of lean-premixed combustors; and decreasing premixing quality enhances the influence of inlet air temperature and pressure on NOx emissions.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献