Mitigation Options to Reduce Peak Air Temperature and Air-Conditioning Demand in the Context of a Warming Climate for a Tropical Coastal City

Author:

Pokhrel Rabindra1,González-Cruz Jorge E.2

Affiliation:

1. Department of Mechanical Engineering, The City College of New York, New York, NY 10031

2. Presidential Professor NOAA-CREST, Professor of Mechanical Engineering, Department of Mechanical Engineering, The City College of New York, New York, NY 10031

Abstract

Abstract Air conditioning (AC) demand has recently grown to about 10% of total electricity globally, and the International Energy Agency (IEA) predicts that the cooling requirement for buildings globally increases by three-fold by 2050 without additional policy interventions. The impacts of these increases for energy demand for human comfort are more pronounced in tropical coastal areas due to the high temperatures and humidity and their limited energy resources. One of those regions is the Caribbean, where building energy demands often exceed 50% of the total electricity, and this demand is projected to increase due to a warming climate. The interconnection between the built environment and the local environment introduces the challenge to find new approaches to explore future energy demand changes and the role of mitigation measures to curb the increasing demands for vulnerable tropical coastal cities due to climate change. This study presents mid-of-century and end-of-century cooling demand projections along with demand alleviation measures for the San Juan Metropolitan Area in the Caribbean Island of Puerto Rico using a high-resolution configuration of the Weather Research and Forecasting (WRF) model coupled with Building Energy Model (BEM) forced by bias-corrected Community Earth Systems Model (CESM1) global simulations. The World Urban Database Access Portal Tool (WUDAPT) Land Class Zones (LCZs) bridge the gap required by BEM for their morphology and urban parameters. MODIS land covers land use is depicted for all-natural classes. The baseline historical period of 2008–2012 is compared with climate and energy projections in addition to energy mitigation options. Energy mitigation options explored include the integration of solar power in buildings, the use of white roofs, and high-efficiency heating, ventilation, and air conditioning (HVAC) systems. The impact of climate change is simulated to increase minimum temperatures at the same rate as maximum temperatures. However, the maximum temperatures are projected to rise by 1–1.5 °C and 2 °C for mid- and end-of-century, respectively, increasing peak AC demand by 12.5% and 25%, correspondingly. However, the explored mitigation options surpass both increases in temperature and AC demand. The AC demand reduction potential with energy mitigation options for 2050 and 2100 decreases the need by 13% and 1.5% with the historical periods. Overall, the demand reduction potential varies with LCZs showing a high reduction potential for sparsely built (32%), and low for compact low rise (21%) for the mid-of-century period compared with the same period without mitigation options.

Funder

National Science Foundation

United States Agency for International Development

Publisher

ASME International

Reference61 articles.

1. The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning (International Energy Agency);IEA,2018

2. Energy Consumption in Typical Caribbean Office Buildings: A Potential Short-Term Solution to Energy Concerns;Edwards;Renew. Energy,2012

3. Impacts of Climate Change on Caribbean Life;Macpherson;Am. J. Public Health,2013

4. Detection of Recent Regional Sea Surface Temperature Warming in the Caribbean and Surrounding Region;Glenn;Geophys. Res.-Lett.,2015

5. Projections of Heat Waves Events in the Intra-Americas Region Using Multimodel Ensemble;Angeles-Malaspina;Adv. Meteorol.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the problems in urban areas from an ecological perspective with nature-based solutions;Rendiconti Lincei. Scienze Fisiche e Naturali;2024-08-12

2. Mapping local climate zones for cities: A large review;Remote Sensing of Environment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3