Optimizing the Cost and Reliability of Shared Anchors in an Array of Floating Offshore Wind Turbines

Author:

Devin Michael C.1,DuPont Bryony L.1,Hallowell Spencer T.2,Arwade Sanjay R.3

Affiliation:

1. School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331

2. Baker Design Consultants, Freeport, ME 04032

3. University of Massachusetts Amherst, Amherst, MA 01003

Abstract

Abstract Commercial floating offshore wind projects are expected to emerge in the U.S. by the end of this decade. Currently, however, high costs for the technology limit its commercial viability, and a lack of data regarding system reliability heightens project risk. This work presents an optimization algorithm to examine the tradeoffs between cost and reliability for a floating offshore wind array that uses shared anchoring. Combining a multivariable genetic algorithm with elements of Bayesian optimization, the optimization algorithm selectively increases anchor strengths to minimize the added costs of failure for a large floating wind farm in the Gulf of Maine under survival load conditions. The algorithm uses an evaluation function that computes the probability of mooring system failure, then calculates the expected maintenance costs of a failure via a Monte Carlo method. A cost sensitivity analysis is also performed to compare results for a range of maintenance cost profiles. The results indicate that virtually all of the farm's anchors are strengthened in the minimum cost solution. Anchor strength is increased between 5 and 35% depending on farm location, with anchor strength nearest the export cable being increased the most. The optimal solutions maintain a failure probability of 1.25%, demonstrating the tradeoff point between cost and reliability. System reliability was found to be particularly sensitive to changes in turbine costs and downtime, suggesting further research into floating offshore wind turbine failure modes in extreme loading conditions could be particularly impactful in reducing project uncertainty.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference30 articles.

1. 2018 Offshore Wind Technologies Market Report,2019

2. Hywind Scotland, World's First Floating Wind Farm, Performing Better Than Expected;CleanTechnica,2018

3. 2018 Cost of Wind Energy Review;Renewable Energy,2019

4. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3