Breaking Wave Hazard Estimation Model for the U.S. Atlantic Coast

Author:

Hallowell Spencer T.1,Arwade Sanjay R.1,Qiao Chi2,Myers Andrew T.2,Pang Weichiang3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003

2. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115

3. Department of Civil and Environmental Engineering, Clemson University, Clemson, SC 29634

Abstract

Abstract As offshore wind development is in its infancy along the U.S. Atlantic Coast challenges arise due to the effects of strong storms such as hurricanes. Breaking waves on offshore structures induced by hurricanes are of particular concern to offshore structures due to high magnitude impulse loads caused by wave slamming. Prediction of breaking wave hazards is important in offshore design for load cases using long mean return periods of environmental conditions. A breaking wave hazard estimation model (BWHEM) is introduced that provides a means for assessing breaking hazard at long mean return periods over a large domain along the U.S. Atlantic Coast. The BWHEM combines commonly used breaking criteria with the Inverse First Order Method of producing environmental contours and is applied in a numerical study using a catalog of stochastic hurricanes. The result of the study shows that breaking wave hazard estimation is highly sensitive to the breaking criteria chosen. Criteria including wave steepness and seafloor slope were found to predict breaking conditions at shorter return periods than criteria with only wave height and water depth taken into consideration. Breaking hazard was found to be most important for locations closer to the coast, where breaking was predicted to occur at lower mean return periods than locations further offshore.

Funder

Massachusetts Clean Energy Center

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference53 articles.

1. 2016 Offshore Wind Energy Resource Assessment for the United States,2016

2. Mapping and Assessment of the United States Ocean Wave Energy Resource,2011

3. Variability of Breaking Wave Characteristics and Impact Loads on Offshore Wind Turbines Supported by Monopiles;Wind Energy,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3