Enhanced Experimental Testing of New Erosion-Resistant Compressor Blade Coatings

Author:

Leithead Sean G.1,Allan William D. E.1,Zhao Linruo2,Yang Qi2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada e-mail:

2. Institute for Aerospace Research, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada e-mail:

Abstract

Performance differences between bare 17-4PH steel V103 profile (NACA 6505 with rounded leading edge (LE) and trailing edge (TE)) gas turbine engine axial compressor blades, and those coated with either a chromium-aluminum-titanium nitride (CrAlTiN) or a titanium-aluminum nitride (TixAl1−xN) erosion-resistant coating were tested. A coating thickness of 16 μm was used, based on experimental results in the literature. Coatings were applied using arc physical vapor deposition at the National Research Council of Canada (NRC). All blades were tested under identical operating conditions in the Royal Military College of Canada (RMC) turbomachinery erosion rig. Based on a realism factor (RF) defined by the authors, this experimental rig was determined to provide the best known approximation to actual compressor blade erosion in aircraft gas turbine engine axial compressors. An average brown-out erosive media concentration of 4.9 g/m3 of air was used during testing. An overall defined Leithead–Allan–Zhao (LAZ) score metric, based on mass and blade dimension changes, compared the erosion-resistant performance of the bare and coated blades. Blade surface roughness data were also obtained. Based on the LAZ Score, CrAlTiN-coated blades performed at least 79% better than bare blades, and TixAl1−xN-coated blades performed at least 93% better than bare blades. The TixAl1−xN-coated blades performed at least 33% better than the CrAlTiN-coated blades. Extrapolation of results predicted that a V-22 Osprey tiltrotor military aircraft, for example, could fly up to 79 more missions with TixAl1−xN-coated compressor blades in brown-out sand concentrations than with uncoated blades.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3