Modeling of a Refrigerator in Disaster Vehicle, Using Solar Energy and Engine Exhaust Gases Heat

Author:

Derakhshan Shahram1,Yazdani Alireza2

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran e-mail:

2. School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran

Abstract

In critical situations such as floods and earthquakes, the relief forces require a refrigeration for pharmaceuticals and vaccines, which could operate without an electrical energy and the alternative energies, such as solar energy, engine exhaust gases heat, and wind energy. In this paper, a refrigeration cycle has been modeled as an adsorption refrigeration cycle with an activated carbon/methanol as adsorbent/adsorbate pair and two sources of energy—solar energy and engine exhaust gases heat. The solar cycle had a collector with area of 1 m2 and the exhaust gas cycle included a heat exchanger with 100 °C temperature difference between inlet and outlet gases. The temperature profile in adsorbent bed, evaporator, and condenser was obtained from modeling. Moreover, the pressure profile, overall heat transfer coefficient of collector and adsorbent bed, concentration, and the solar radiation were reported. Results represented the coefficient of performance (COP) of 0.55, 0.2, and 0.56 for complete system, solar adsorption refrigeration, and exhaust heat adsorption refrigeration, respectively. In addition, exhaust heat adsorption refrigeration has a value of 2.48 of specific cooling power (SCP). These results bring out a good performance of the proposed model in the climate of Iran.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Vaccine Instability in the Cold Chain: Mechanisms, Analysis and Formulation Strategies;Biologicals,2014

2. Use of Solar Energy in Optimization of Renewable Generation Sources,2015

3. Rogowska, A., and Szaflik, W., 2005, “Cooling Load Production in Sorption Cycles Supplied by a Geothermal Heat Source for Air,” World Geothermal Congress, Antalya, Turkey, April 24–29, paper No: 1445

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3