Advances in the Numerical Analysis of Linearized Unsteady Cascade Flows

Author:

Usab W. J.1,Verdon J. M.1

Affiliation:

1. Theoretical and Computational Fluid Dynamics, United Technologies Research Center, East Hartford, CT 06108

Abstract

This paper describes two new developments in the numerical analysis of linearized unsteady cascade flows, which have been motivated by the need for an accurate analytical procedure for predicting the onset of flutter in highly loaded compressors. In previous work, results were determined using a two-step or single-pass procedure in which a solution was first determined on a rectilinear-type cascade mesh to determine the unsteady flow over an extended blade-passage solution domain and then on a polar-type local mesh to resolve the unsteady flow in high-gradient regions. In the present effort a composite procedure has been developed in which the cascade-and local-mesh equations are solved simultaneously. This allows the detailed features of the flow within the local mesh region to impact the unsteady solution over the entire domain. In addition, a new transfinite local mesh has been introduced to permit a more accurate modeling of unsteady shock phenomena. Numerical results are presented for a two dimensional compressor-type cascade operating at high subsonic inlet Mach number and high mean incidence to demonstrate the impact of the new composite- and local-mesh analyses on unsteady flow predictions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3