Numerical Modeling and Design Challenges of Boundary Layer Ingesting Fans

Author:

Sieradzki Adam1,Kwiatkowski Tomasz1,Turner Mark G.2,Łukasik Borys1

Affiliation:

1. Łukasiewicz Research Network, Institute of Aviation , Aleja Krakowska 110/114, Warsaw 02-256 , Poland

2. University of Cincinnati , P O. Box 210070, Cincinnati, OH 45221

Abstract

Abstract Studies show that boundary layer ingesting (BLI) propulsion can provide significant fuel burn reduction relative to pylon-mounted turbofan engines. However, this type of propulsion can lead to serious difficulties and engineering challenges. Numerical analyses of the fan with a uniform flow at the inlet and that exposed to the distorted flow were performed. These required the use of a full-annulus unsteady time-marching computational fluid dynamics (CFD) model, which was validated with experimental data obtained at a test rig. The first negative effect of the distorted inlet velocity profile is a variable incidence angle of the rotor. Both the calculations and the experiment show the nonuniform axial and tangential velocity profiles in front of the rotor. As a result, significant changes in the angle of attack of the blades and corresponding unsteady rotor loads are observed. The research was performed for different operating conditions to obtain performance curves and assess the BLI influence. This demonstrated the second problem arising from the operation of the fan with the distorted flow at the inlet, which is a reduction of the stall margin (48% reduction in the experiment). The whole stage was optimized for the axisymmetric flow to ensure a required value of stall margin and the highest possible efficiency at the design point. The experimental efficiency of the rig at the design point with the distorted inlet was 2.05% lower than the undistorted one. The CFD model shows a 1.25% reduction. Similar reductions were obtained for other operating points.

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft;Felder,2011

2. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid Wing Body Aircraft;Felder,2009

3. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems;Felder,2011

4. Aircraft System Study of Boundary Layer Ingesting Propulsion;Hardin,2012

5. Aerodynamic Analysis of a Boundary-Layer-Ingesting Distortion-Tolerant Fan;Florea,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3