Benchmarking of Computational Fluid Methodologies in Resolving Shear-Driven Flow Fields

Author:

Horton Brandon1,Song Yangkun1,Feaster Jeffrey1,Bayandor Javid2

Affiliation:

1. CRashworthiness for Aerospace Structures and Hybrids (CRASH) Lab, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

2. Fellow ASME CRashworthiness for Aerospace Structures and Hybrids (CRASH) Lab, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

Abstract

Despite recent interests in complex fluid–structure interaction (FSI) problems, little work has been conducted to establish baseline multidisciplinary FSI modeling capabilities for research and commercial activities across computational platforms. The current work investigates the fluid modules of contemporary FSI methodologies by solving a purely fluid problem at low Reynolds numbers to improve understanding of the fluid dynamic capabilities of each solver. By incorporating both monolithic and partitioned solvers, a holistic comparison of computational accuracy and time-expense is presented between lattice-Boltzmann methods (LBM), coupled Lagrangian–Eulerian (CLE), and smoothed particle hydrodynamics (SPH). These explicit methodologies are assessed using the classical square lid-driven cavity for low Reynolds numbers (100–3200) and are validated against an implicit Navier–Stokes solution in addition to established literature. From an investigation of numerical error associated with grid resolution, the Navier–Stokes solution, LBM, and CLE were all relatively mesh independent. However, SPH displayed a significant dependence on grid resolution and required the greatest computational expense. Throughout the range of Reynolds numbers investigated, both LBM and CLE closely matched the Navier–Stokes solution and literature, with the average velocity profile error along the generated cavity centerlines at 1% and 4%, respectively, at Re = 3200. SPH did not provide accurate results whereby the average error for the centerline velocity profiles was 31% for Re = 3200, and the methodology was unable to represent vorticity in the cavity corners. Results indicate that while both LBM and CLE show promise for modeling complex fluid flows, commercial implementations of SPH demand further development.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3